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Ensemble Learning

Figure : What are they?
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Figure : Machine Learning
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Figure : (Jazz) Ensemble
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Figure : Ensemble 13
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Supervised Learning

Training data:
{(xi , yi )}ni=1, where xi ∈ X ⊂ Rp and yi ∈ Y = {±1} for
classification;
(Y = R = (−∞, ∞) for regression)

Testing (generalization) data: {(x ′j , y ′j )}mj=1

Data: (x , y)
from← (X ,Y )

iid∼ PX ,Y

Machine or classifier: F̂ ∈ F such that F̂ : X → Y

Training error:

TE =
1

n

n

∑
i=1

1[yi 6=F̂ (xi )]
=

1

n

n

∑
i=1

1[yi F̂ (xi )<0]

Testing (generalization) error:

ĜE =
1

m

m

∑
j=1

1[y ′j F̂ (x ′j )<0] and GE = EX ,Y {1[YF (X )<0]}
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Supervised Learning-II

With respect to a loss L

TE (F ) =
1

n

n

∑
i=1

L(yi ,F (xi )), GE (F ) =
1

m

m

∑
j=1

L(y ′j ,F (x
′
j ))

again GE is an estimate for EY ,XL(Y ,F (X )).

For regression, L(y ,F (x)) = (y − F (x))2 is widely used.
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Regression-theme

(Classical) Regression

Data: (xi , yi )ni=1, where xi ∈ X = Rp, yi ∈ Y = R.
Distribution: (yi |xi )ni=1 ∼indep. PY |x .

Class of learners: F = {f (X ) : f (X ) = β0 + β′X =
β0 + ∑p

j=1 βjXj , for β0 ∈ R, β ∈ Rp}.
Construction: Least square errors (LSE)

SSE (F̂ ) = ||Y − Ŷ ||2 =
n

∑
i=1

(yi − F̂ (xi ))
2 = min

F∈F

n

∑
i=1

(yi −F (xi ))
2

where F̂ (x) = β̂0 + β̂′x .

Evaluation: Sum of square errors (SSE or equivalently MSE).
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Regression-v-class

Naive regression (Classification)

Data:
(xi , yi )ni=1, where xi ∈ X = Rp, yi ∈ Y = {±1}.
Distribution: (yi , xi )ni=1 ∼indep. PY ,X .

Class of learners: F , the collection of linear functions of
1,X1, · · · ,Xp.

Construction: Least square errors (LSE)

Evaluation: TE, GE (with respect to zero-one loss function)

TE =
1

n

n

∑
i=1

1[yi F̂ (xi )<0], GE =
1

m

m

∑
j=1

1[y ′j F̂ (x ′j )<0]
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Regression-v-random

(random ensemble) Regression

Data: (xi , yi )ni=1, where xi ∈ X = Rp, yi ∈ Y = R.
Distribution: (yi , xi )ni=1 ∼indep. PY ,X .

Class of base learners: FB = {1,X1, · · · ,Xp}
Construction: Random subset regression

For k = 1, 2, · · · ,K

1 Randomly choose m base learners f ∈ FB , m < p + 1.
2 Fit a (subset) regression (LSE): f̂k , i.e. regress Y on the

chosen m independent variables.

F̂ = ∑K
k=1 wk f̂k where w ’s are the weights of the k-th learner.

Usually ∑k wk = 1, 0 < wk < 1.

Evaluation: Sum of square errors (SSE or equivalently mean
square errors MSE)
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Random (Average) Regression

Data:
(xi , yi )ni=1, where xi ∈ X = Rp, yi ∈ Y = R = (−∞, ∞).
Distribution: (yi , xi )ni=1 ∼indep. PY ,X .

Class of base learners:
F = {1,X1, · · · ,Xp}
Construction: Random subset regression

Repeat 1, 2 for K times

1 Randomly choose m X’s from F , m < p + 1.
2 Fit(LSE) a (subset) regression: f̂k , i.e. regress Y on the

chosen m independent variables.

F̂ (x) = 1
K ∑K

k=1 f̂k (x).

Evaluation: SSE or MSE
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Recap

Random Average Scheme (RA) + Base Learners

Random Average Regression: RA+(subset) Regression

Random Forests: RA+(subset) CART

Boosting and variations

Weighted average of CARTs with reweighted data-feeds

The population version of AdaBoost is a Newton-like updates
for minimizing exponential criterion EY |x{e−YF (x)} (loss for
construction)

Friedman, Hastie and Tibishirani (2000)
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CART Algorithm (Regression)

Data: (xi , yi )ni=1, where
xi ∈ X = Rp, yi ∈ Y = R = (−∞, ∞) where
xi = (xi1, · · · , xip)′, i = 1, · · · , n.
Greedy recursive binary partition

1 Find the split variable/point (j , s) that solve

SSE1 = min
j ,t

min
c1

∑
xi∈R1(j ,t)

(yi − c1)
2 + min

c2
∑

xi∈R2(j ,t)

(yi − c2)
2


(1)

where R1(j , t) = {X |Xj ≤ t},R2(j , t) = {X |Xj > t}
2 Given (j , t), (ĉ1, ĉ2) solves the inner minimization and

ĉl = ave(yi |xi ∈ Rl (j , t)), l = 1, 2.
3 Continue adding split one at a time  R1, · · · ,RM

F̂ (x) = ∑M
m=1 ˆcm1[x∈Rm ].

Evaluation: SSE or MSE

Hastie, Tibshirani and Friedman (2001).
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RF and Boosting R package

Titanic: Getting Started With R

rpart, randomForest packages at CRAN

Boosting algorithms

ada, adabag, gbm, mboost packages

Link: Rstudio, kaggle

Ensemble Learning C. Andy Tsao
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Random Forests (for regression)

Data: (xi , yi )ni=1, where xi ∈ X = Rp, yi ∈ Y = R.
Distribution: (yi , xi )ni=1 ∼iid PY ,X .

Class of base learners:
FB : the collection of regression trees with independent
variables being a subset of X1, · · · ,Xp.

Construction: Random Forests
For k = 1, 2, · · · ,K

1 Draw a bootstrap sample Z ∗ of size n from the data.
2 Randomly choose m independent variables among X1, · · · ,Xp

3 Fit a regression tree (CART): i.e. Construct f̂k for Y on the
chosen m independent variables with Z ∗

F̂ = 1
K ∑K

k=1 f̂k .

Evaluation criterion: SSE, MSE.
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Random Forests (classification)

The classification algorithm is similar except

class of base learners = the collection of classification trees

In choosing the split variable/point, square error is substituted
by classification impurity measures, say misclassification error.

F̂ (x) = ∑M
m=1 cm1[x∈Rm ] where cm = majority(yi |xi ∈ Rm).
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AdaBoost-I

Given (xi , yi )ni=1 where xi ∈ X and yi ∈ Y = {±1}.
Algorithm

1 Initialize D1(i) = n−1 for i = 1, 2, · · · , n
Dt(i) = the weight on the i-th case in the t-th iteration.

2 For t = 1, 2, · · · ,T

Construct the (trained) learner ht : X → Y using the weight
Dt on the data.
Compute the error εt = ∑n

i=1Dt(i)1[ht (xi )yi<0].

Then αt = ln( 1−εt
εt

).

Update the weights Dt+1(i) = Dt(i)e
αt1[ht (xi )yi<0] ∀i

Normalization Dt+1(i) = Dt+1(i) (∑n
i=1Dt+1(i))

−1 ∀i

3 Output the final hypothesis F (x) = sgn
[
∑T

t=1 αtht(x)
]

.
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ABC about Boosting

Start with a simple type learner (reg, tree, etc)

Train the learner several times (learning process) and obtain
the fitted learner using data

Higher weights to misclassified cases each time

Final prediction: weighted majority vote

Criteria: TE: Training error and GE: Testing error

Under weak base hypothesis assumption, TE → 0.

Rather immune to overfitting for less noisy data in apps.

Breiman (1996): “Best off-the-shelf classifier in the world”
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FHT’s Results

Friedman, Hastie, and Tibishirani (2000)

The population version of AdaBoost is a Newton-like updates
for minimizing exponential criterion EY |x{e−YF (x)}.

Let Je(F ) = EY |x{e−YF (x)} and

arg min
f

J̃e(F + f ) arg min
s,c

J̃e(F + sc),

where J̃e is an approximation of Je .

The solutions are

s =

{
+1, if Ewe{Y |x} > 0,
−1, otherwise,

and c =
1

2
ln

(
1− err

err

)
,

where we = e−YF (x) and err = Ewe

{
1[Y 6=s(x)]

}
.
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Exponential Loss

The 0-1 loss can be bounded by exponential loss

1[Y 6=F (x)] = 1[YF (x)<0] ≤ e−YF (x)
def
= Le [Y ,F (x)].

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

YF(X)

Lo
ss

Exponential Loss
0−1 Loss

Alternative losses can be used for classification and regression
problems.
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Concluding remarks

Framework

RF, Boosting are powerful and better ”off-the-shelf”(?)
learners

High dimensional problem ready
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Figure : What does a Data Scientist do?
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Thanks for your attention!
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Performance of Average Learner

For the training data D = (yi , xi )ni=1, the MSE for learner fk is

MSE (fk) =
1

n

n

∑
i=1

(yi − fk(xi ))
2.

Let wk = the weight of fk with ∑K
k=1 wk = 1 and 0 < wk < 1.

Note

EwMSE (fk) =
K

∑
k=1

wk

(
1

n

n

∑
i=1

(yi − fk(xi ))
2

)

≥ 1

n

n

∑
i=1

(yi − Ew fw (xi ))
2 = MSE (Ew fw )

where Ew fw (x) = ∑K
k=1 wk fk(x).
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When wk = 1/K , Ew fw (x) is the average of the K learners.

MSE (Ew fw ) ≤ averagekMSE (fk) =
1

K ∑
k

MSE (fk).

And it is not necessarily

MSE (Ew fw ) ≤ MSE (fk) for all k.
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