Ensemble Learning

C. Andy Tsao

Institute of Statistics/Department of Applied Math National Dong Hwa University, Hualien

> March, 2015 Kaohsiung, Taiwan

> > < 17 ▶

C. Andy Tsao

Ensemble Learning

Outline

- Overview
- Regression: theme and variations
- CART and tree-based methods
- Random Forests
- Boosting: AdaBoost and its variants
- Concluding Remarks

Ensemble Learning

Figure : What are they?

Image: A math a math

Figure : Machine Learning

<ロト <部ト < 注ト < 注ト

Figure : (Jazz) Ensemble

< ∃⇒

▲□▶ ▲圖▶ ▲屋

Figure : Ensemble 13

Overview Regression: theme and variations CART RF and Boosting in R Random Forests Boosting Concluding remarks

Supervised Learning

Training data:

 $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathcal{X} \subset \mathcal{R}^p$ and $y_i \in \mathcal{Y} = \{\pm 1\}$ for classification;

 $(\mathcal{Y}=\textit{R}=(-\infty,\infty)$ for regression)

- Testing (generalization) data: $\{(x'_j, y'_j)\}_{j=1}^m$
- **Data:** $(x, y) \stackrel{from}{\leftarrow} (X, Y) \stackrel{iid}{\sim} P_{X,Y}$
- Machine or classifier: $\widehat{F} \in \mathcal{F}$ such that $\widehat{F} : \mathcal{X} \to \mathcal{Y}$

Supervised Learning

Training data:

 $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathcal{X} \subset \mathcal{R}^p$ and $y_i \in \mathcal{Y} = \{\pm 1\}$ for classification;

 $(\mathcal{Y}=\textit{R}=(-\infty,\infty)$ for regression)

- Testing (generalization) data: $\{(x'_j, y'_j)\}_{j=1}^m$
- Data: $(x, y) \stackrel{from}{\leftarrow} (X, Y) \stackrel{iid}{\sim} P_{X,Y}$
- Machine or classifier: $\widehat{F} \in \mathcal{F}$ such that $\widehat{F} : \mathcal{X} \to \mathcal{Y}$
- Training error:

$$TE = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i \neq \widehat{F}(x_i)]} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i \widehat{F}(x_i) < 0]}$$

Testing (generalization) error:

$$\widehat{GE} = \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{[y'_j \widehat{F}(x'_j) < 0]} \text{ and } \overline{GE} = E_{X,Y} \{ \mathbf{1}_{[YF(X) < 0]} \}$$

Supervised Learning-II

With respect to a loss L

$$TE(F) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, F(x_i)), \quad GE(F) = \frac{1}{m} \sum_{j=1}^{m} L(y'_j, F(x'_j))$$

again GE is an estimate for $E_{Y,X}L(Y, F(X))$.

For regression, $L(y, F(x)) = (y - F(x))^2$ is widely used.

Regression-theme

(Classical) Regression

- Data: $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathcal{X} = \mathcal{R}^p$, $y_i \in \mathcal{Y} = \mathcal{R}$. Distribution: $(y_i|x_i)_{i=1}^n \sim_{indep.} P_{Y|x}$.
- Class of learners: $\mathcal{F} = \{f(X) : f(X) = \beta_0 + \beta' X = \beta_0 + \sum_{j=1}^p \beta_j X_j$, for $\beta_0 \in \mathcal{R}, \beta \in \mathcal{R}^p\}$.
- Construction: Least square errors (LSE)

$$SSE(\hat{F}) = ||Y - \hat{Y}||^2 = \sum_{i=1}^{n} (y_i - \hat{F}(x_i))^2 = \min_{F \in \mathcal{F}} \sum_{i=1}^{n} (y_i - F(x_i))^2$$

where $\widehat{F}(x) = \hat{\beta_0} + \hat{\beta}' x$.

Evaluation: Sum of square errors (SSE or equivalently MSE).

Regression-v-class

Naive regression (Classification)

- Data: $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathcal{X} = \mathcal{R}^p$, $y_i \in \mathcal{Y} = \{\pm 1\}$. Distribution: $(y_i, x_i)_{i=1}^n \sim_{indep.} P_{Y,X}$.
- Class of learners: \mathcal{F} , the collection of linear functions of $1, X_1, \cdots, X_p$.
- Construction: Least square errors (LSE)
- Evaluation: TE, GE (with respect to zero-one loss function)

$$TE = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i \widehat{F}(x_i) < 0]}, \quad GE = \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}_{[y'_j \widehat{F}(x'_j) < 0]}$$

Overview Regression: theme and variations CART RF and Boosting in R Random Forests Boosting Concluding remarks

Regression-v-random

(random ensemble) Regression

- Data: $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathcal{X} = \mathcal{R}^p$, $y_i \in \mathcal{Y} = \mathcal{R}$. Distribution: $(y_i, x_i)_{i=1}^n \sim_{indep.} P_{Y,X}$.
- Class of base learners: $\mathcal{F}_B = \{1, X_1, \cdots, X_p\}$
- Construction: Random subset regression

• For $k = 1, 2, \cdots, K$

- **1** Randomly choose *m* base learners $f \in \mathcal{F}_B$, m .
- 2 Fit a (subset) regression (LSE): \hat{f}_k , i.e. regress Y on the chosen m independent variables.
- $\hat{F} = \sum_{k=1}^{K} w_k \hat{f}_k$ where w's are the weights of the k-th learner. Usually $\sum_k w_k = 1, 0 < w_k < 1$.
- Evaluation: Sum of square errors (SSE or equivalently mean square errors MSE)

(日)

Random (Average) Regression

Data:

 $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathcal{X} = \mathcal{R}^p$, $y_i \in \mathcal{Y} = \mathcal{R} = (-\infty, \infty)$. Distribution: $(y_i, x_i)_{i=1}^n \sim_{indep.} P_{\mathbf{Y}, \mathbf{X}}$.

Class of base learners:

$$\mathcal{F} = \{1, X_1, \cdots, X_p\}$$

Construction: Random subset regression

- Repeat 1, 2 for K times
 - **1** Randomly choose m X's from \mathcal{F} , m .
 - 2 Fit(LSE) a (subset) regression: \hat{f}_k , i.e. regress Y on the chosen m independent variables.

•
$$\hat{F}(x) = \frac{1}{K} \sum_{k=1}^{K} \hat{f}_k(x).$$

Evaluation: SSE or MSE

Random Average Scheme (RA) + Base Learners

- Random Average Regression: RA+(subset) Regression
- Random Forests: RA+(subset) CART

Boosting and variations

- Weighted average of CARTs with reweighted data-feeds
- The population version of AdaBoost is a Newton-like updates for minimizing exponential criterion $E_{Y|x}\{e^{-YF(x)}\}$ (loss for construction)

Friedman, Hastie and Tibishirani (2000)

CART Algorithm (Regression)

Data:
$$(x_i, y_i)_{i=1}^n$$
, where
$$x_i \in \mathcal{X} = \mathcal{R}^p, y_i \in \mathcal{Y} = \mathcal{R} = (-\infty, \infty) \text{ where } x_i = (x_{i1}, \cdots, x_{ip})', i = 1, \cdots, n.$$
Greedy recursive binary partition
Find the split variable/point (j, s) that solve
$$SSE_1 = \min_{j,t} \left[\min_{c_1} \sum_{x_i \in R_1(j,t)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_1 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_1 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_1 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_1 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_1 \in R_2(j,t)} (y_i - c_2)^2 + \sum_{c_2 \in R_2(j,t)$$

RF and Boosting R package

- Titanic: Getting Started With R
- rpart, randomForest packages at CRAN
- Boosting algorithms
- ada, adabag, gbm, mboost packages
- Link: Rstudio, kaggle

Random Forests (for regression)

- Data: $(x_i, y_i)_{i=1}^n$, where $x_i \in \mathcal{X} = \mathcal{R}^p$, $y_i \in \mathcal{Y} = \mathcal{R}$. Distribution: $(y_i, x_i)_{i=1}^n \sim_{iid} P_{Y,X}$.
- Class of base learners:
 - \mathcal{F}_B : the collection of regression trees with independent variables being a subset of X_1, \dots, X_p .

Construction: Random Forests

For
$$k = 1, 2, \cdots, K$$

- **1** Draw a bootstrap sample Z^* of size *n* from the data.
- **2** Randomly choose *m* independent variables among X_1, \dots, X_p
- **3** Fit a regression tree (CART): i.e. Construct \hat{f}_k for Y on the chosen *m* independent variables with ^Z*

•
$$\hat{F} = \frac{1}{K} \sum_{k=1}^{K} \hat{f}_k$$

Evaluation criterion: SSE, MSE.

Random Forests (classification)

The classification algorithm is similar except

- class of base learners = the collection of classification trees
- In choosing the split variable/point, square error is substituted by classification impurity measures, say misclassification error.

•
$$\hat{F}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{[x \in R_m]}$$
 where $c_m = majority(y_i | x_i \in R_m)$.

Overview Regression: theme and variations CART RF and Boosting in R Random Forests Boosting Concluding remarks 00

AdaBoost-I

Given $(x_i, y_i)_{i=1}^n$ where $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y} = \{\pm 1\}$. Algorithm

Initialize $D_1(i) = n^{-1}$ for $i = 1, 2, \dots, n$ $D_t(i) =$ the weight on the *i*-th case in the *t*-th iteration.

2 For
$$t = 1, 2, \cdots, T$$

- Construct the (trained) learner $h_t : \mathcal{X} \to \mathcal{Y}$ using the weight D_t on the data.
- Compute the error $\epsilon_t = \sum_{i=1}^n D_t(i) \mathbb{1}_{[h_t(x_i)y_i < 0]}$. Then $\alpha_t = \ln(\frac{1-\epsilon_t}{\epsilon_t})$.
- Update the weights $D_{t+1}(i) = D_t(i)e^{\alpha_t \mathbf{1}_{[h_t(x_i)y_i < 0]}} \quad \forall i$
- Normalization $D_{t+1}(i) = D_{t+1}(i) \left(\sum_{i=1}^{n} D_{t+1}(i)\right)^{-1} \quad \forall i$

3 Output the final hypothesis $F(x) = \operatorname{sgn}\left[\sum_{t=1}^{T} \alpha_t h_t(x)\right]$.

- Start with a simple type learner (reg, tree, etc)
- Train the learner several times (learning process) and obtain the fitted learner using data
- Higher weights to misclassified cases each time
- Final prediction: weighted majority vote

ABC about Boosting

- Start with a simple type learner (reg, tree, etc)
- Train the learner several times (learning process) and obtain the fitted learner using data
- Higher weights to misclassified cases each time
- Final prediction: weighted majority vote
- Criteria: TE: Training error and GE: Testing error

ABC about Boosting

- Start with a simple type learner (reg, tree, etc)
- Train the learner several times (learning process) and obtain the fitted learner using data
- Higher weights to misclassified cases each time
- Final prediction: weighted majority vote
- Criteria: TE: Training error and GE: Testing error
- Under weak base hypothesis assumption, TE \rightarrow 0.
- Rather immune to overfitting for less noisy data in apps.
- Breiman (1996): "Best off-the-shelf classifier in the world"

FHT's Results

Friedman, Hastie, and Tibishirani (2000)

• The population version of AdaBoost is a Newton-like updates for minimizing exponential criterion $E_{Y|x} \{ e^{-YF(x)} \}$.

FHT's Results

Friedman, Hastie, and Tibishirani (2000)

- The population version of AdaBoost is a Newton-like updates for minimizing exponential criterion $E_{Y|x} \{e^{-YF(x)}\}$.
- Let $J_e(F) = E_{Y|x} \{ e^{-YF(x)} \}$ and $\arg \min_f \tilde{J}_e(F+f) \rightsquigarrow \arg\min_{s,c} \tilde{J}_e(F+sc),$

where \tilde{J}_e is an approximation of J_e .

FHT's Results

Friedman, Hastie, and Tibishirani (2000)

- The population version of AdaBoost is a Newton-like updates for minimizing exponential criterion $E_{Y|x} \{ e^{-YF(x)} \}$.
- Let $J_e(F) = E_{Y|x} \{ e^{-YF(x)} \}$ and $\arg \min_f \tilde{J}_e(F+f) \rightsquigarrow \arg\min_{s,c} \tilde{J}_e(F+sc),$

where \tilde{J}_e is an approximation of J_e .

The solutions are

$$s = \left\{ \begin{array}{ll} +1, \text{ if } E_{w_e}\{Y|x\} > 0, \\ -1, \text{ otherwise,} \end{array} \right. \text{ and } c = \frac{1}{2} \ln \left(\frac{1 - \text{err}}{\text{err}} \right),$$

where
$$w_e = e^{-Y \mathcal{F}(x)}$$
 and $\mathbf{err} = E_{w_e} \left\{ \mathbf{1}_{[Y
eq s(x)]}
ight\}$

Exponential Loss

The 0-1 loss can be bounded by exponential loss

$$\mathbf{1}_{[Y \neq F(x)]} = \mathbf{1}_{[YF(x) < 0]} \leq e^{-YF(x)} \stackrel{\text{def}}{=} L_e[Y, F(x)].$$

Overview Regression: theme and variations CART RF and Boosting in R Random Forests Boosting OO Concluding remarks

Concluding remarks

- Framework
- RF, Boosting are powerful and better "off-the-shelf" (?) learners
- High dimensional problem ready

Figure : What does a Data Scientist do?

æ

▲ 문 ▶ . ▲ 문 ▶ ...

Thanks for your attention!

< 17 ▶

References

- Biau, G., Devroye, L. and Lugosi, G. (2008). Consistency of random forests and other average classifiers, *Journal of Machine Learning and Research*, 9, 2039–2057.
- Breiman, L. (2000). Some infinite theory for predictor ensembles. Technical Report 577, Statistics Department, UC Berkeley, 2000.
- Breiman, L. (2001). Random Forests, *Machine Learning*, **45**, 5–32.
- Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Wadsworth.
- Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Element of Statistical Learning: Data mining, inference and prediction. Springer-Verlag.
- FRIEDMAN, J. H., HASTIE, T. AND TIBISHIRANI, R. (2000).
 Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28, 337–407.
- Hong, B.-Z. (2013). Random Average Regression Methods. Master Thesis. National Dong Hwa University. Taiwan.
- Tsao, C. A. (2014). A Statistical Introduction to Ensemble Learning Methods. Journal of Chinese Statistical Association; 52, 115-132.

Performance of Average Learner

For the training data $D = (y_i, x_i)_{i=1}^n$, the MSE for learner f_k is

$$MSE(f_k) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_k(x_i))^2.$$

Let $w_k =$ the weight of f_k with $\sum_{k=1}^{K} w_k = 1$ and $0 < w_k < 1$. Note

$$E_{w}MSE(f_{k}) = \sum_{k=1}^{K} w_{k} \left(\frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{k}(x_{i}))^{2} \right)$$
$$\geq \frac{1}{n} \sum_{i=1}^{n} (y_{i} - E_{w}f_{w}(x_{i}))^{2} = MSE(E_{w}f_{w})$$

where
$$E_w f_w(x) = \sum_{k=1}^{K} w_k f_k(x)$$
.

When $w_k = 1/K$, $E_w f_w(x)$ is the average of the K learners.

$$MSE(E_w f_w) \leq average_k MSE(f_k) = \frac{1}{K} \sum_k MSE(f_k).$$

And it is not necessarily

 $MSE(E_w f_w) \leq MSE(f_k)$ for all k.